

Designed Surfaces by Plasma Nanoscale Coatings

Yaw S. Obeng, Ph.D., MBA
President
Nkanea Technologies, Inc.
Frederick, MD

Nature Inspired Films

Micromorphological characteristics of water-repellent leaf surfaces:

- (A) Hypericum aegypticum
- (B) Marsilea mutica
- (C) Nelumbo nucifera
- (D) Lupinus polyphyllos.
- (E) Gladiolus watsonioides
- (F) Sinarundinaria nitida,
- (G)Tropaeolum majus
- (H) Melaleuca hypericifolia

Hydrophobic Lotus Leaf

Superhydrophobic Nasturtin Leaf

Mircrograph of Water Drop
On Lotus Leaf

Artificial Superhydrophobic Surface

Culled from Biology Inspired Nano-Materials: Superhydrohobic Surfaces, Jared

NKANEA TECHNOLOGIES INC.

Nature Inspired Conformal Barrier Coatings

- Fuel and Hydrocarbon Barrier
 - Must protect from Hydrocarbons and Bio-Based Fuels
- Fuel Tanks for Small Engines
 - US annual volume: 19-20,000,000 units
 - Cost Sensitive
- Thermoplastic Polymer Substrates
 Made by Blow Molding usually
 Polyethylene
- Evolving Standards from California Air Resources Board and EPA [1g/m²/day]

- Moisture and Weather Barriers
 - Protect from Moisture,
 Environmental Polutants
 - May require UV Stability
 - Variations in Temperature
 Performance
 - May require reduced O₂
 Permeability
- Applications
 - Packaging
 - Electronic Components
 - Displays, Signs and Signals
- Functional Barriers
 - Tie Coats and Subcoats
 - Designed Surface Chemistry

<u>Nano-Texture + Layers:</u> Multi Stage Plasma Based Conformal Coatings

Plasma Based Conformal Coatings Platform

StormRider Technologies Process, Patent Pending

Examples of TEOS [SiO_x] Coatings on EVA Foam Substrate

75 70 (e) 65 60 45 40 0 10 20 30 40 50 coating time (minutes)

Fig. 2. Transmittance plot of surface ATR-FTIR signal through TEOScoated PE-EVA foam substrate as a function of coating time.

Fig. 5. Hardness as a function of PECVD-TEOS coating time.

Deshpande, Dakshinamurthy, Kuiry, Vaidyanathan, Obeng, and Seal, Thin Solid Films, **483** (2005) 261–269.

TEOS on EVA Foam Continued

Fig. 6. Hastic modulus as a function of PECVD-TEOS coating time.

Deshpande, Dakshinamurthy, Kuiry, Vaidyanathan, Obeng, and Seal, Thin Solid Films, **483** (2005) 261–269.

SiOx on Polycarbonate Edge Mask

SiOx on Glass Substrate 150nm

60 nm Polyolefin on Glass

Broad Technology Platform

- Wide Range of Substrates
 - Polyolefins
 - Polyolefin Foams
 - Polycarbonates
 - Carbon Fiber Composites
 - Rubber
 - Latex Films
 - Filled and Complex Formulations
- Dry-in, Dry-out
- Formed and Irregular Shapes
- Straightforward Scale-Up

- Organic Monomers:
 - Allyl Alcohol
 - Allyl Amine
 - Vinyl Acetate
 - Acrylic Acid
 - 2-Hydroxyethylmethacrylate
 - N-Vinylpyrrolidinone
 - Olefins
 - Fluorocarbons
- Inorganic/Ceramic Monomers
 - SiOx Precursors
 - TiOx Precursors

Surface-R -> Surface-R*
Surface-R* + Monomer -> Surface-R-Graft

Key Issues in Emerging Sectors

- Non Corrosive and Green Processes
- Conformal Coating Throughput [Mass Market Applications >300K Pieces/yr]
 - Chamber sizes are mass flow limited
 - Number of coating cycles/day/chamber
 - Parylene: 1-2 /day
 - Plasma: 10-20 /day
- Conformal Coating Cost
 - Cost per piece
 - Capital costs per coating applicator
 - Complex cyclophane monomer cost
- Coating Chemical/Physical Properties Flexibility
 - Temperature performance
 - Moisture resistance
 - Solvent resistance
 - Adhesion
 - Abrasion resistance

Applications Specificity: Defined by the End Use Market

- Wet Lubricious
- Dry Lubricious
- Reactive Functional Group
- Barrier Coatings
 - Moisture Barrier
 - Hydrocarbon Barrier

Some Potential Killer Applications Space

Biomaterials

- Tissue engineering
- •Regenerative medicine
- Drug delivery
- Proteins and peptides at interfaces
- Lipid and biomimetic membranes

Responsive colloids and materials

- Biosensors
- Surfaces and colloids in imaging and diagnostics
- Radiation Detection

Reactive Surfaces

- Adsorption
- Catalysis
- Electrochemistry

Materials for Advanced Electronics

- Storage
- Memory
- Optical communications
- •Materials to enable novel device architectures

Novel phenomena and techniques

- Interfacial processes,
- capillarity and wetting in biological systems

Barrier Coatings

Solvent and Moisture Barrier Films

Solvent Barrier

- Applications
 - Fuel Tanks
 - Circuit Boards
 - LED Lighting
 - Chip Level Packages
- Coatings
 - SiOx Ceramic
 - Fluorocarbon

Moisture Barrier

- Applications
 - Circuit Boards
 - LED Lighting
- Coatings
 - SiOx Ceramic
 - Fluorocarbon
 - Polyolefin
 - TiOx Ceramic [Photoactive-Self Cleaning]
 - Fluorosilicate

Ceramic Nano Coatings over Thermoplastics

- Glasses have low water and hydrocarbon permeability
- TiO_x coatings have potential to be photo reactive and self cleaning.
- SiO_x and TiO_x coatings can be applied to thermplastic parts at the nano scale via StormRider patented Plasma method.
- Commercial low cost monomers. Scalable process.
- Process is rapid: less than 1 hr/cycle
- Large scale plasma deposition machines available 42"x42"x54".
- Dry-in dry-out process.
- Applications in Automotive, Consumer Electronics, Lighting, Medical Devices, Aerospace and Packaging.

Industrial Applications

- Abrasion Resistance
 - Instrument Panels
 - Displays
 - Solder Masks
- Circuit Board Level Barrier Coatings
 - Automotive
 - Consumer Electronics

Nature Inspired Passivation Films Afford Enhanced Protecting for Implantable Electronic Circuitry

Automotive Circuit Board Example. Hydrocarbon and Moisture Barrier

Automotive Control System Circuit Board

- Chasis-Underhood Environment
- SiOx Plasma Based Conformal Coating
 - 500K Units/yr
 - Temperature Tolerant to 140°C Board Components
- Cycle Time: 25-50 min.
- Dry-in, Dry-out
- Economics [est.]:
 - Capital Hardware: \$350K installed, 36"x36"x48" chamber
 - Throughput: 250/hr
 - Monomer Cost: \$20K/yr
 - Low Emissions

Nature Inspired Passivation Films Afford Enhanced SORE Compliance with Permeation Regulations

CARB (California Air Resource Board) and the EPA's (U.S. Environmental Protection Agency)

Blow Molded Fuel Tank Process Example. Hydrocarbon Barrier

Blow Molded PE Small Engine Fuel

Tank

SiOx Plasma Based Conformal

Coating

Cycle Time: 25-50 min.

Dry-in, Dry-out

Economics [est.]:

Capital Hardware: \$350K

installed, 36"x36"x48" chamber

Throughput: 120/hr

Monomer Cost: \$20K/yr

Low Emissions

Pilot Plasma Coating Unit

Production Plasma Coating Units

Production Plasma Coating Unit 36"X36"X48" Chamber

Acknowledgements

- Dr. E.M Yokley, StormRider Technologies, Inc.
- Professor Kathleen Richardson, Clemson University Advanced Materials Research Laboratory
- Lou Fierro, Applications Manager, March Plasma, St. Petersburg,
 FL
- Paul Kelly, Technical Manager, Mergon Corporation, Anderson,
 SC.

Contact Us!

yobeng@nkanea.com

www.Nkanea.com